
Critical Vulnerability in Browser Security Metrics

Mustafa Acer

Carnegie Mellon Silicon Valley

mustafa.acer@sv.cmu.edu

Collin Jackson

Carnegie Mellon Silicon Valley

collin.jackson@sv.cmu.edu

Abstract

Every time a browser vendor releases a patch for
a critical vulnerability, the popular news media
publishes a slew of negative press article detail-
ing the security holes that have been announced
in the product. Users who read these articles of-
ten decide to switch to a “safer” browser. The
negative press associated with security patch re-
leases has a number of unhealthy effects on the
industry. We challenge the conventional wis-
dom of the current browser security evaluation
paradigm: that browsers that receive infrequent
security patches are safer than browsers that
receive frequent patches, that browsers with a
lower bug count are safer, and that reducing
browser vulnerabilities is the only path that a
browser vendor can follow to improve security.
We argue that patch deployment matters vastly
more than patch frequency, that bug count fails
to take into account differences in severity and
vendor reporting methodologies, and that the
security features that matter most are ignored
by negative news articles. We propose methods
for evaluating browser security that take into ac-
count new industry best practices such as silent
patch deployment and sandboxing.

1 Introduction

We are constantly barraged by news about the
latest embarrassing browser exploit, and the
problem seems to be growing larger every day.
Browser vendors are evaluated by their ability to
stay out of the news, and security vendors like
Cenzic, IBM, and Symantec regularly publish re-
ports [6, 15, 16] that damage the reputation of
browser vendors with the most reported bugs.
Unfortunately, these reports discourage secure
browser vendor behavior by punishing proactive
patching and ignoring many factors that are im-
portant for end-user security.

We argue that the most prevalent metric, the
number of publicly disclosed vulnerabilities in a
browser for specific interval of time, does not rep-
resent a useful measure of vulnerability for any
browser. We discuss four major weaknesses of
this metric and propose a new metric that more
accurately represents the actual risk to users.

2 Flaws of Current Metrics

Consider the example of Cenzic, a leading secu-
rity vendor, who recently released a report [5] de-
scribing the breakdown of browser vulnerabilities
for the first half of 2009. The report compared
the number of publicly reported vulnerabilities
in browsers for that six month period and indi-

1



cated that Firefox was the riskiest browser with
44% of vulnerabilities. Their methodology has
several major limitations:

• Ignores Patch Deployment. Patches
that are quickly deployed have a minimal
effect on user security. Silent update patch
deployment technologies can have a signifi-
cant effect on user security [10, 9].

• Discourages Disclosure. To improve per-
ceived security, vendors often combine unre-
lated bugs into a single disclosure or avoid
reporting them entirely, even after security
patches are widely deployed [13].

• Ignores Severity. Improved browser se-
curity architectures such as the sandboxed
renderer in Google Chrome [4] can reduce
many security bugs from critical severity
(arbitrary code execution) to high sever-
ity (accessing confidential data belonging to
other web sites) [2], but simple bug counting
does not account for severity.

• Ignores Plug-ins. According to Adobe,
Flash Player is installed by 99% of web
users [7], and a recent report [17] suggests
that 80% of Flash Player users have not
yet installed the latest critical security up-
dates. Firefox includes an update check ser-
vice that help the user keep Flash Player up
to date, but existing metrics do not measure
its effect on end user security.

None of these problems are browser-specific;
they affect security evaluations of all soft-
ware. However, they are particularly severe
for browsers, which constantly interact with un-
trusted code (HTML, JavaScript, CSS, and so
on). Attackers can easily run exploits on millions

of browsers by buying ad impressions or com-
promising a popular web site [12]. It is critical
that browser vendors reduce actual exploitabil-
ity, rather than waging a public relations battle
over metrics that have no connection to reality.

3 Our Proposal

We propose that browsers be evaluated on the
percentage of users who have at least one un-
patched critical-severity vulnerability (or at least
one unpatched high-severity vulnerability) on an
average day during the specified interval. Unless
sandboxing is used to restrict vulnerabilities in
plug-ins, we propose that vulnerabilities in plug-
ins also count for this calculation. This metric
addresses the problems described above:

• Takes Account of Patch Deployment.

Browsers that use faster update techniques
will benefit, because users will have vulner-
abilities for a shorter period of time.

• Encourages Disclosure. Browser vendors
who disclose vulnerabilities but patch users
quickly will not be penalized. Combining
multiple bugs into a single disclosure will
not improve a vendor’s score. This reflects
the reality that an attacker only needs one
vulnerability to exploit a user’s browser.

• Takes Account of Severity. Separate
scores for critical and high-severity vulnera-
bilities ensure that browsers that use sand-
boxing technologies to reduce the severity of
vulnerabilities will receive better scores.

• Includes Plug-ins. Browser vendors that
do an effective job of sandboxing or up-
dating a user’s plugins will receive a better
score.

2



4 Measurement

We have begun measuring proposed browser risk
metric using techniques we developed in our pre-
vious work [12, 3, 1]. Our server collects browser
and plug-in version data from the web by run-
ning JavaScript advertisements on ad networks.
We compare these observations against a vul-
nerability database compiled from browser and
plug-in vendors [8, 14, 11]. We then assign a risk
score to browser and plug-in combinations. We
define risk score as the percentage of browsers
that have at least one known critical or high
vulnerability. For any given day, this score is
calculated based on the vulnerabilities reported
by vendors before that day.

Our preliminary results are shown Figure 1.
We found that the percentage of vulnerable of
browsers increases significantly if the plug-ins
vulnerabilities are included in the calculation.
For example, we found that only about 4% of
Google Chrome users have critical or high vul-
nerabilities. However, 30% are vulnerable if
Flash Player vulnerabilities included. Fortu-
nately, the latest beta version of Google Chrome
now includes Flash Player updates in its silent
update process [18]. We expect Google Chrome’s
plugin-adjusted risk score to drop significantly
once this beta version is rolled out to all users.

One limitation of our experimental methodol-
ogy is that we are unable to evaluate the patch
level of Internet Explorer. Unlike other browsers,
Internet Explorer does not advertise which secu-
rity patches have been applied when querying
the user agent string. It might be possible to de-
tect the browser’s patch status by triggering an
exploit, but this would potentially expose users
to risk or interfere with their browsing session.
An open research problem is how to evaluate In-
ternet Explorer’s patch level in an ethical exper-

Figure 1: Average browser risk scores over a
forty-day span.

iment.

5 Conclusion

We expect that adoption of more constructive
metrics for browser security will increase open-
ness and disclosure without harming user secu-
rity. By evaluating the security functionality
that matters most to users and web application
developers, we will encourage browser vendors to
innovate and compete on security features that
can have the most positive impact.

References

[1] Gaurav Aggarwal, Elie Burzstein, Collin
Jackson, and Dan Boneh, An analysis of
private browsing modes in modern browsers,
To appear in USENIX Security 2010.

[2] The Chromium Authors, Sever-
ity guidelines for security issues,
http://www.chromium.org/developers/

severity-guidelines.

3



[3] Adam Barth, Collin Jackson, and John C.
Mitchell, Robust defenses for cross-site re-
quest forgery, Proceedings of the 15th ACM
Conference on Computer and Communica-
tions Security (CCS), 2008.

[4] Adam Barth, Collin Jackson, Charles Reis,
and the Google Chrome Team, The secu-
rity architecture of the Chromium browser,
September 2008, Technical Report.

[5] Cenzic, Web application secu-
rity trends report, November 2009,
http://www.cenzic.com/downloads/

Cenzic_AppSecTrends_Q1-Q2-2009.pdf.

[6] Inc. Cenzic, Web application se-
curity trends report, 2009, http:

//www.cenzic.com/downloads/Cenzic_

AppSecTrends_Q1-Q2-2009.pdf.

[7] Adobe Corporation, Flash usage statistics,
September 2009, http://www.adobe.com/

products/player_census/flashplayer.

[8] Mozilla Corporation, Known vulnerabilities
in mozilla products, September 2009,
http://www.mozilla.org/security/

known-vulnerabilities.

[9] Thomas Duebendorfer and Stefan Frei, Why
silent updates boost security, CRITIS 2009
Critical Infrastructures Security Workshop,
May 2009.

[10] Stefan Frei, Thomas Duebendorfer, and
Bernhard Plattner, Firefox (in)security
update dynamics exposed, ACM SIG-
COMM Computer Communication Review
39 (2009), no. 1, 16–22.

[11] Google Inc, Google Chrome re-
leases, November 2009, http:

//googlechromereleases.blogspot.com.

[12] Collin Jackson, Adam Barth, Andrew
Bortz, Weidong Shao, and Dan Boneh, Pro-
tecting browsers from DNS rebinding at-
tacks, Proceedings of the 14th ACM Con-
ference on Computer and Communications
Security (CCS), 2007.

[13] Window Snyder, Critical vul-
nerability in Microsoft metrics,
November 2007, http://blog.

mozilla.com/security/2007/11/30/

critical-vulnerability-in-microsoft-metrics/.

[14] Opera Software, Opera security advisory,
September 2009, http://www.opera.com/

support/kb.

[15] IBM Security Solutions, X-Force
2009 trend and risk report, http:

//www-935.ibm.com/services/us/iss/

xforce/trendreports/.

[16] Symantec, Internet security threat re-
port, 2010, http://www.symantec.

com/business/theme.jsp?themeid=

threatreport.

[17] Trusteer, Flash security hole advisory,
August 2009, http://www.trusteer.com/
files/Flash_Security_Hole_Advisory.

pdf.

[18] Linus Upson, Bringing improved
support for adobe flash player
to google chrome, March 2010,
http://blog.chromium.org/2010/03/

bringing-improved-support-for-adobe.

html.

4


